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LAUNCHING OF SURFACE WAVES ON AXTAL-CYLINDRICAL, REACTIVE SURFACE
by Norman C. Wenger

Iewis Research Center

SUMMARY

The excitation of the dominsnt transverse magnetic (TM) surface wave on an
axial-cylindrical reactive suarface is discussed. Tne surface wave launcher
consists of a perfectly conducting, infinitely thin cylindrical surface coaxial
with an axial-cylindrical reactive surface. The reactive gsurface is of infinite
extent, and the perfectly conducting surface is of semi-infinite extent. The
surface wave is excited by the dominant TM mode in the coaxial portion of the
structure.

Numerical results are obtained for the energy transported by the reflected
field, the surface wave field, and the radiation field by using an exact anal-
ysis. The exact results are then compared with the results from two approxi-
mation techniques that are frequently used to solve problems of this class to
determine the validity of these techniques.

This method of excitation was found to be very efficient over a large
range of frequencies and over wide varilations in the surface reactance.

INTRODUCTION

The propagation of electromagnetic surface waves on various types of
structures has been widely treated in the literature. This extensive treatment
has been motivated largely by the inherent low attenuation and large bandwidth
found in many surface wave structures. Excellent surveys of the properties of
sarface waves and surface wave structures useful in communications systems have
been presented by Zucker (ref. 1) and Barlow (ref. 2). A considerable amount
of work on new structures that can support surface waves such as anisotropic
Territes and plasma columns is also being performed. A knowledge of the proper-
ties of the surface waves assoclated with these structures can provide some in-
sight into their composition.

A common problem to all of these areas of interest is the efficient excit-
ation or launching of the gulded electromagnetic surface waves. A general
requirement for a good surface wave launcher is a high launching efficiency
over a large frequency bandwidth. Since the surface wave fields are of infinite
extent, the launcher must also be of infinite extent to have 100 percent launch-
ing efficiency. 3Brown (ref. 3) has shown that the launching efficiency of a



finite-sized launcher can be made arbitrarily close to 100 percent. This large
efficiency can be realized, however, only at the expense of frequency bandwidth.

A very limited amount of work has been done in analyzing finite-sized
launchers that are physically realizable. The majority of numerical data pres-
ently available is for the class of launchers that are infinitesimal in some
dimension. To this class belong the short electric and magnetic current ele-
ments, line sources, current loops, etc. The finite-sized launcher can be
handled, at least in theory, by a superposition of infinitesimal sources. In
practice, it is usually difficult to carry ocut this superposition because of
the complexity involved in the calculation and the uncertainty in the distribu-
tion of the field within the launcher. The finite-sized launcher 1is usually
analyzed by using an approximate field distribution. The field or aperture
distribution is often approximated by a "chopped" surface wave distribution;
that is, the field in the aperture plane of the launcher is assumed to have the
same Torm as the surface wave field within the aperture and is assumed to
vanish everywhere cutside of the aperture. Another often-used approximation
technique is Kirchhoff's approximation. In this method the aperture field is
assumed to be of the same form as the unperturbed incident field. TFor either
case, the surface wave amplitude can be easily computed by an integration over
the aperture plane since the surface wave modes and the radiation field are
orthogonal (ref. 4). The accuracy of the results obtained by using these ap-
proximation techniques is usually unknown since no criterion exists which can
determine the extent of the approximations.

The purpose of this report is to present an exact analysis and numerical
results for the launching characteristics, radiation pattern, and frequency
bandwidth of a finite-sized launcher that is physically realizable. These re-
sults will then be compared with the results for the "chopped" surface wave
distribution and with the results using Kirchhoff's approximation to determine
under what conditions the approximation techniques are valid.

The analysis will be restricted to the class of surface wave structures
that have the configuration of a cylindrical column of circular cross section.
In order to keep the results of this work as general as possible, the effect of
the surface wave structure on the electromagnetic field will be taken into
account by specifying a surface impedance. The surface impedance is defined as
the ratio of the tangential electric field to the component of the tangential
magnetic field perpendicular to the electric field along the surface of the
wave gulding structure. The numerical value of the surface impedance will, of
course, depend on the composition
of the structure and the polariza-
tion of the electromagnetic field.
The case where the structure has no
losses will be considered to sim-
plify the analysis; consequently,
the surface impedance will be a
pure reactance. Only the case of
inductive surface reactance will be
treated.

Figure 1. - Surface wave structure. The particular configuration




that will be considered is shown in figure 1. The structure consists of a re-
active cylindrical surface of radius a and of infinite extent in the
z-direction. Coaxial with this cylinder 1s an infinitely thin, perfectly con-
ducting surface of radius b for 2z < 0. The surface wave field, radiation
field, and the reflected field will be computed for the case where the incident
field is the dominant transverse magnetic (TM) mode in the region a <r <b
and z < 0, propagating in the positive z-direction. The analysis will be re-
stricted to the frequency range where the dominant TM mode is the only propa-
gating mode.

Before a formal solution of the problem is carried out it is instructive
to examine the various types of waves that exist in the different portions of
the structure.

SYMBOLS
a radius of cylindrical reactive surface (see fig. 1)
b radius of perfectly conducting surface (see fig. 1)
a b-a (see fig. 1)
EY(b,p) function defined in eg. (18c)
F(B) function defined in eq. (21) )
F(p) Weiner-Hopf factors of F(B)
h, . elgenvalue for surface wave mode
Im imaginary part of

I (b,8) function defined in eq. (18a)

J™(b,B) function defined in ey. (18b)

J V-1

ko free-space wave number

ké real part of ko

k; negative imaginary part of ko
P, eigenvalue of coaxial mode

Re real part of

r radial coordinate (see fig. 1)
Xg surface reactance
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o(r,B)
¢*(r,B)
¥(r,z)
vy (r,z)

v (r,z)

S

w

characteristic impedance of free space
axial coordinate (see fig. 1)
koXs/Zo

complex variable

propagation constant for surface wave mode

real part of Bo

negative imaginary part of BO
propagation constant for coaxial mode
real part of Yo

negative imaginary part of v,
azimuthal angle (see fig. 1)

radial coordinate (see fig. 1)
compliment of polar angle (see fig. 1)

Fourier transform of V(r,z)

single-sided Fourier transforms of ¢(r,z)

6 component of total magnetic field
incident field
scattered fileld

angular frequency

Subscripts:

i

rad

rf

SW

incident

radiated

reflected

surface wave




SURFACE WAVE LAUNCHER
Coaxial Portion of Structure

The total field in the coaxial portion of the structure can be expressed
in the form of an infinite summation of modes. These modes will consists, in
general, of transverse magnetic (TM), transverse electric (TE), and hybrid
modes. The characteristics of these modes will depend on the variation of the
surface reactance with frequency and on the polarization of the field.

At low frequencies only the TM,, mode will propagate. The subscripts
denoting the TMy,, modes are selected such that the first subscript m corre-
sponds to the number of cyclic variations of the mode intensity with 6 and
the second subscript n corresponds to the number of nodes of the mode inten-
sity with radius. The TM_,, mode is composed of an electric field with axial and
radial components and a magnetic field with an azimuthal component. All other
field components are zero. The remaining T™ modes and all the TE and hybrid
modes are cut off at low frequencies. Thus, the total field in the coaxial
portion of the structure will consist of the TM,, mode except in the vicinity
of the discontinuity at z = O. The presence of the discontinuity will cause
the dominant TMyo mode to excite the evanescent TMon modes. All the other
possible modes are not excited since both the TM,, mode and the discontinuity
are circularly symmetric. The total field in the coaxial portion of the struc-
ture will consist, therefore, of the entire spectrum of TM,, modes with each
mode having an axial and radial component of electric field and an azimuthal
component of magnetic field. ©Since the electric and magnetic fields are re-
lated by Maxwell's equations, only the magnetic field need be determined to
unigquely specify the total field. Thus, the azimuthal or 6 component of the
magnetic field can be regarded as a scalar function from which all the other
field components can be derived.

Let w(r,z) be the O component of the magnetic field. Then, in the co-
axial portion of the structure, y(r,z) can be expanded in a series of the
eigenfunctions (ref. 5, pp. 709 to 778):

.."r Z,
¥(z,2) = Ag[T1(=3per)HE(~dpgb) - To(-3Peb)EG(~dpor)]e ' ©

[o¢]
2 2 “Tn?
+ 0 a[5 (o B (ep) - T (e Ee(pr)]e B (1)
n=1
where the A, are complex amplitude constants. A time dependence of edwt
has been assumed for all field quantities. ©Since the solution (1) must satisfy

Maxwell's equations, the eigenvalues p, and the propagation constants v,
are related by

2 _ .2 2
Yo =P * kg



where ko 1s the free-space wave number. The eigenvalues p, are determined
by the boundary conditions. The ratio of the axial component of the electric
Tield to the azimuthal component of the magnetic field must equal the surface
reactance JXg along the reactive surface r = a. This condition requires
V(r,z) to satisfy the egquation

19
prley ErW(r,zX] + ay(r,z) =0 (2)
r=a
where o = koXS/ZO and Z, 1s the characteristic impedance of free space.
Substituting the general solution (1) into equation (2) generates the following

set of equations that must be satisfied by the eigenvalues Ppt

3,(-3p p)HE(~gp a) - T (~dp 8 )HE(-3p D)

jpgp ———2—= : = —an (3)
J1(=dp 2 )Hg(-dpgb) = Jo(=dpsp)H (-jp2)
N b)d a) - dJ b)N a
olppP)do(ppa) = Jo(pb)Ng(ppa) - for n> 0 (5b)

Pn® FUp 0 N (58] - Wo(pyb)d1(Ppa)

Along the surface of the perfect conductor r = b, the axial component of the
electric field must vanish. This condition requires W(r,z) to satisfy the
eguation

%sa-r— [ru(x,z)] =0 (4)

r=b
This boundary condition has been built into solution (1).

If the surface reactance vanishes, the first term in solution (1) will re-
duce to the ordinary TEM wave assoclated with a coaxial line; whereas the re-
msining terms in solution (1) will reduce to the TMyp modes for a coaxial line.
It should also be noted that since the total field consists entirely of TM
modes it is ohly necessary to specify the surface reactance for oae polarization
of the electric field. The value of the surface reactance for other polariza-
tions is arbitrary.

Open Portion of Structure

The total field in the open portion of the structure consists of discrete
modes gulded by the reactive surface plus the radiation field. The guided
waves can be described as either TM, TE, or hybrid. Since the field in the
coaxial portion of the structure is composed entirely of circularly symmetric
TM modes and since the structure is circularly symmetric, the field in the open
portion of the structure will also consist of circularly symmetric TM modes.
The only transverse magnetic mode that possesses circular symmetry is the TM,
mode, which is commonly called the Goubau wave. The single subscript n de-
noting the various TM, modes refers to the number of cyclic variations of the

6



mode intensity with 6. A second subscript is not necessary since all modes in
the open portion of the structure are evanescent in the radial direction.

The total field V(r,z) in the open portion of the structure consists,
therefore, of the radiation field plus the TM, surface wave (ref. 2, pp. 60
to 69) of the form

B (g e)e " (s)

wvhere By 1is a complex amplitude constant. The eigenvalue h, and the propa-
gation constant B, are related by

B2=h2+k2
O O O

since equation (5) must satisfy Maxwell's equations. The eigenvalue hy 1is
determined by the boundary condition (2) at the reactive surface. Substituting

equation (5) into equation (2) requires h, to satisfy the equation

HZ(-Jjh.a)
jha —2 o = ga (6)

FORMAL SOIUTION OF PROBLEM
Statement of Problem

The formal solution of the problem will be carried out by using Laplace
transform and Wiener-Hopf (refs. 6 and 7) techniques. It is convenient to
decompose the total field V(r,z) into two parts: an incident field Vs(r,z)
and a scattered field Vg(r,z), where

V(r,z) = Vi(r,z) + Vg (r,z)

The incident field is the dominant TM,, mode in the coaxial portion of the
structure and exists by definition for a < r < b and all values of z:

TP,b . . . . -3V o2
= I:Jl(-Jpor)H%(-Jpob) - Jo(-Jpob)Hﬁ(—Jpor)]e © (7)

lIf:'l_(:r';z) =
The amplitude factor in equation (7) has been selected such that the incident
field has unit amplitude at r = b. Since the incident field does not satisfy
the proper boundary conditions for =z > O, the scattered field will contain a
term of the same form as the incident field for =z > 0O to nullify this improper
solution.

The scattered field satisfies the following equations:



d,  dZy
s ,1's I _L) _
arz + T or + azz + (ko o2 WS =0 (8)
L2 (o) vary | =0 (9)
r=a
1O (riy) | =0 (10)
Ir=
z<0
-3T 2
Vg - Vg I =e © (11)
r=p* r=b-~
z>0 z>0
>
1oy | 12wy | -o (12)
r=b* r=b~
z>0 z>0

Equation (8) is the Helmholtz equation expressed in cylindrical coordinates.
Equations (9) and (10) are a statement of the boundary conditions on the reac-
tive surface and on the perfectly conducting surface, respectively. Equation
(11) requires the scattered field to be discontinuous at r =Db and 2z > 0O

in order to make the total field continuous. ZEquation (12) requires the axial
component. of the electric field to be continuous at r =b and =z > 0. In
addition to the above boundary conditions, a radiation condition must also be
imposed. The radiation condition requires all admissible solutions for the
scattered field to correspond to divergent waves at infinity.

Taplace Transformation
Let the function o(r,p) be defined by
p(r,p) = 9*(xr,8) + o=(r,p)
where

00

.//‘ Ws(r,z)e'ﬁz dz
0

i

¢t (r,B)

1 T EEEEED 1 DEN N O [NEN] LR n nia I I— L RTEE L IN RN 1] NI



and

o~ (x,B)

0
/ ‘st(r,z)e"BZ dz

The scattered field Ws(r,z) can then be recovered by the inversion integral

Yg(r,2) = E::TL_J/ o(r,p)eP? ap
c

where C denotes a suitable contour in the complex B-plane.

In order to make o*(r,p) and o~ (r,B) analytic functions of B in a
common region in the complex P-plane, the free-space wave number ko will be
made complex. This is equivalent to 1ntroduc1ng losses into the medium sur-
rounding the structure. Let JKo = Jk + k os Where k and k are real.

In the final solution k will be set equal to zero to recover the result for
the lossless case. Slnce ko 1s complex, the propagation constants Yo and
Bo will also be complex. Thus, vy and Bg will, in general, be given by
Yy = drg + Yo and JjB, = JBO + B", where Y/, YO, BS, and Bg are all real.
The inegualities k <BL <7 and Yo < B < k§ can be shown to be valid
for all cases.

Taking the Laplace transform of equations (8), (9), and (10) gives

32 d
S;% + % 5% -+ (BZ + kg - i%)@ =0 (13)
%a%(rcpwraq) | =0 (14)
r=a
L2 (x7) | -0 (15)
r=b

where B by virtue of the previous discussion, must be restricted to the range
-To <Re B <71(.

Solution for Transformed Scattered Field

The solution of equation (13) is of the form

9(x,p) = A(p)JI () + B(B)H; (Ar)



1/2
where A = (kg + B2) / and A(B) and B(B) are suitable functions of B that
must be selected to satisfy the boundary conditions (14) and (15) and the radi-
ation condition.

In the region a < r < b the proper solution of eguation (13) is

Deb0e) + ari0e)] :10w) - [Mp0a) + agi(a)] BT (ar)
p(r,B) = 9(b7,B) =5 > - SRl T (16)
Ducoa) + aBE(a)] a1 () - [Ay(ha) + adqina)]HE(2b)

The solution given by eguation (16) is an even function of 2; consequently,
either branch of A can be selected. In the region r > b the proper solu-

tion of equation (13) is

2 ()
o(r,8) = o(bt,p) ———o (17)

BE (2b)

In order to satisfy the radiation condition, the branch of A where Im A <O
must be selected.

The unknown coefficients ¢(b-,B) and o(b*,8) in equations (16) and (17)
can be determined by the discontinuity condition on the scattered field at
r = b as given by equation (11). This can easily be accomplished by intro-
ducing the functions J*+(b,B), J-(b,B) and E+(b,B), where

J+(b;B) = 4\ [llfs(b+,Z) - ws(b-)z):le—BZ dz (lBa)
0
J-(b,B) = / [Va(ph,2) - Ug(b7,2)]e B2 az (18p)
E¥(b,p) = = & (v0) l (18¢)
r=b

It should be noted that the function J (b,B) is actually the Laplace transform
of the portion of the electric current on the perfectly conducting surface

r = b associated with the scattered field. The function E*(b,B) is propor-
ticnal to the transform of the axial component of the total electric field
evaluated at r = b. Thus, E*(b,B) could have been defined equally well by the

egquation

E¥(b,B) = +)

B

o
S5t (ro
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by virtue of equation (15). The function J+(b,ﬁ) can be calculated at once for
for the region Re B > -Yg by using equation (11):

1

EIETN (19)

I (b,B) =

The functions J (b,8) and E'(b,p) are, at present, unknown; however, a con-
sideration of the complex forms of kg, By, and To reveals that J (b, B) is
an analytic function of the complex variable B 1in the region Re B < Y and
that E*(b,p) is analytic in the region Re B > -vQ.

From the definitions of J%(b,B) and J~(b,B) it is apparent that
p(b*,B) - o(b~,B8) = J(v,B) + J=(b,B) (20)
The unknown coefficients o(b~,B) and ¢(b*,B) can be expressed in terms of the
function E1(b,B) by using the solutions (16) and (17) in conjunction with the

definition for E'(b,B) as given by equation (18c). The result of this opera-
tion allows the left side of egquation (20) to be put into the form

p(b*,B) - o(b=,8) = F(B)E*(b,B) (21)

where F(B) is given by

2 2
F(B) = 2 Egiﬁil A+ a Hl(%il
TbAZ Hg(%b) Hg(%a)

1
AEHB )T (xb) - Hz(%b) %ai] + afHE( 2a)T (W) - H2(Nb)T; (ha)]

The function F(B) can be shown to be analytic in the strip -T" < Re B < Y"-
Substltutlng equation (21) into equation (20) and using the result for
J¥(b,B) from equation (19) give

1

5 T, (e2)

F(B)E*(b,8) = J7(b,B) +

Wiener-Hopf factorization. - Equation (22) can be solved for the functions
E*(b,B) and J-(b,B) by performing a Wiener-Hopf factorization on the function
F(B); that is, F(B) will be expressed as the ratio of the two functions FH(B)
and F-(B), where F¥(B) is analytic and nonzero for Re B > -yy and ™(B) is
analytic and nonzero for Re B < YS- The details of this factorization are
given in the appendix. It is sufficient, at this point to list some of the
properties of the functions FT(B) and F-(B):

(1) The function F'(B) has a single zero at B = -jB, and a branch point
at B = -Jkq.

11



(2) The function F-(B) has an infinite number of zeros in the complex
B-plane and a branch point at B = jk,. The zeros of F-(B) are located at

B =Jr, and B = yvu(n >0).

(3) The function FH(B) is of he order B‘l/z at infinity, and the
function F-(B) is of the order BLl/2 at infinity.

The decomposition of the function F(B) into the ratio of FH(B) to F~(B)
allows equation (22) to be put into the form

F(-3r5)  F(B) - F(-3r,)
FH(B)E(b,8) - 55 3:2 T T L a0 o0) (25)
o

Figure 2 shows the regions in the complex P-plane where the various transforms
are analytic. A study of flgure 2 reveals that the left side of equation (23)

is analytic for Re B > -Y and that the right side 1is analytic for Re B < Y

The equality in egquation (25) holds only in the strip -v5 <Re B < 7]

Edge conditions. - The solution for the scattered field is not unique un-
less the edge conditions are specified at r =b and 2z =0 (ref. 7, pp. 75
to 76). These condltlo s require the axial component of the electric field to
be of the order of 72 at the edge, which makes the transform of the elec-
tric field (i.e., E+(b,B)) of the order of p~L/2 as p - ». A similar condi-
tion exists for the asymptotic form of the current at the edge. This condition
requires J7(b,B) to be of the order of p~~ as B - -o.

The asymptotic forms of FH(B), F~(B), Et(b,B), and J=(b,B) for large
values of P show that each side of equation (23) approaches zero as B goes
to infinity in the proper half plane. A function that is analytic everywhere
in the complex P-plane can be defined from equation (23). This function is

equal to the left side of equation
(23) for Re B > -v,, the right side of
mp equation (23) for Re B < 1J, and
y either side of equation (23) in the
strip -T" < Re B <yg5. Liouville's
theorem (ref 5, DD. 581 to 382) re-
} guires this function to be zero since
Jbp - zero is the only function that is
' analytic everywhere in the complex
=R B-plane and vanishes at infinity.
Setting the left side of equation
(23) equal to zero glves

75 0 oo TReP

[T o) F(-gr,)
> E*(h, E'(b,B) = (24)
" ) + ary)

Note that the proper edge conditions
for ET(b,B) are satisfied by equa-
Figure 2. - Regions in complex B-plane where transforms are analytic. tion (24).
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Transformed scattered field. - The coefficients o(b=,B) and o@(b*,B) can
now be expressed in terms of the known function E™(b,B) by using equations
(16), (17), and (18c):

o (‘/2 # o)F(-31,) F(-dr,) e

(k2*+ B 2 ( ,——— ) (5)(p + or.) F(B)(B + Jro)
(Y27 )
(

o(b",p) = - s

= (26)
@? +p )l/2 F(p)H

(- JYO);ZL
HE (¢/k2 + p? k§<5 + 3r,)

Combining the expressions for o(b~,B) and ¢(b™,B) with the solutions (18)
and (17), respectively, completes the solution for the transformed scattered
magnetic field.

Scattered Field

Inversion integral. - The scattered magnetic field Ws(r,z) can now be
computed by using the inversion integral

L
2nd
C

Vg(r,z) = o(r,p)ePz ap

The inversion contour C must be lo-
cated in ths strip —Yg < Re B <714,
as shown in figure 3, and be on the
[ sheet of the Riemann surface that

corresponds to the choice

Tm(kZ + p2)l/2 < 0 in this strip.

The branch cuts were selected as

straight line segments extending ra-

dially from the branch points

B = £Jko. For the lossless case the
' »Rep Dranch cuts will be located on the
*g5 1} Yo Ko imaginary PB-axis.

ImB

>0 Contour CY | kg 7<0

Discrete spectrum. - In the com-
putation of the discrete portion of
the gspectrum, the amplitudes of the
modes need be evaluated at only one
radius since the radial variation of
these modes is already known. It is
convenient to evaluate the field at
Figure 3, - inversion contour in complex B-plane. the radius r = b since the radially

_kz)"
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varying factor in the general solutions (16) and (17) has been normalized to
unity at r = b.

Pirst, consider the region a <r <b and z < 0. The amplitude of the
scattered field at r =b is

¥y (byz) = %f ?(b™,8)eP* ap
c

where o(b~,B) is given by equation (25). The contour C can be closed in the
right half p-plane with a semicircle of infinite radius that is deformed
around the branch cut as shown in figure 3. The integration along the semi-
circle and along the branch cut can be shown to be zero for =z < O. Thus, the
integral over the original contour C must equal -2nj times the sum of the
residues of the enclosed poles in the right half p-plane. All of the poles of
o(b-,B) in the right half P-plane are due to the zeros of F7(B). Thus, for

z <0

) g (-r,) .,
ll’s(b,Z) = Z'Y aF_( ) e o+ ( - ) aF-(B) e n (27)
e —-559— o+ ) S5
p=dr, — BT,

The first term in equation (27) represents the dominant TMyo mode in the
reflected field, and the summation represents the evanescent TMyp modes in
the reflected field. In the region a <r <b and 2z << 0 the reflected
field consists entirely of the first term, the TM,, mode.

The field in the region z > O evaluated at r =b can be found by using
the same inversion integral. This time, however, the contour is closed in the
left half B-plane with a semicircle of infinite radius that is deformed around
the branch cut. The integration along the semicircle can be shown to be zero
for =z > 0. Thus, the integral over the original contour C must equal 2u]
times the sum of the residues of the enclosed poles in the left half p-plane
plus the branch cut integral. The poles of ¢(b™,B) in the left half p-plane
are due to the zero of F'(B) at B = -jB, and the pole appearing explicitly
in equation (25) at B = -jr,. Thus, for z > O

e 2( s
' (b.a) = -3ES(=gh_b)F-(-gr ) i 3Bz
,2) =
° (52 - 62)M 2B (-gnb) (1o - 8o) “5Rd]
B =-JBo
- e-jYOZ + Branch cut integral (28)

14




The first term in equation (28) represents the TM, surface wave mode in the
open portion of the structure. The second term is the portion of the scattered
field that nullifies the incident field in the region =z > O.

Continuous spectrum. - The branch cut integral or continuous portion of
the spectrum gives rise to the waves associated with the radiation field. The

pattern of the far zone radiation field will be determined by the method of
saddle point integration. In the region r >b the scattered field 1s given

by
Hzi‘/kz + pe Q
¥ (r,2) = 5= p(b+,p) —=p2 P? ap

1
o 2(§h2 + 6% o)
HO\ YRS + B° D

where o(b¥,p) is given by equation (26). At this point, it is convenient to
map the complex B-plane into the complex v-plane with the mapping function

B = -jkosin v

with v = ¢ + Jn and to transform r and 2z into their spherical coordinate
equivalents with r =p cos ¢ and z =p sin ¢ (see fig. 1). The complex
v-plane 1s shown in figure 4, where the entire p-plane is mapped into a strip
of width = in the v-plane. The quantities Q1 to Q4 refer to the images
of the qguadrants of the p-plane in the v-plane. With this transformation the
expression for the scatiered magnetic field becomes

-jk sin sin v
1 Hi(kbp cos @ cos V)F“(—jYO)e JEP ¢
\ys(p}cp) =—2T[j

2 J (=3 . . dv (29)
Ho(kob cos v) (-Jko sin V)(YO - k_ sin v)

If the observation angle ¢ 1is selected such that cos @ # 0, then for
ko >> 1 the Hankel function Hi(kop cos ¢ cos V) in equation (29) can be re-
placed by its asymptotic form

i 31
H%(kop cos @ cos V) z“/# 2 e'J<kop cos @ cos v 75)

oPT cOos @ cos v

where terms of the order of (kop)"B/2 and lower have been neglected. The
scattered field is then given by
—j(k p cos(v - @) - §£)
2yt . O 4
2L/ 2w 1 )e

1
Vv (p,p)=- 5= - - dv
s’ anj Hg(kob cos v)F+(-jko sin v)(r, -k, sin v)(kprcos ¢ cos y)1/2

o} (30)
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Figure 4. - Inversion contour in complex v-plane. Figure 5. - Steepest descent contour in complex v-plane.

for ko >> 1. The integral will be evaluated by deforming the contour C

into the contour of steepest descent. The exponential term in equation (30)
contains a saddle point where sin(v - ©) = O or where v = ¢. In the vicinity
of the saddle point, the guantity cos(v - ®©) can be expanded in a Taylor series
to give

2
cos(v - ) =1 - %? sin £ cos £ . . .

where gng =y - @, The imaginary part of cos(v - @) will have its greatest
rate of change along the contour that passes through the saddle point v =@
at an angle of ﬂ/é with the ¢ axis and, in general, satisfies the equation
Re[ko cos(v = @)] = Re kg. This steepest descent contour (SDC) is shown in
figure 5. The exponential term in equation (30) has unit modulus at the saddle

2
point v = ¢ and falls off as e—(kop/Z)g with distance ¢ along the
steepest descent contour. If ko >> 1, the dominant portion of the integral
for Ws(p,w) will be the integrand evaluated at v = ¢ times the integral of
the Gaussian term with respect to p. Performing the integration gives

v (- gy )e I T /2)

WS(Q:CP) = (31)

FH(-jk, sin @)H%(kob cos 9)(v, - ko sin 9)(kp cos @)

If more terms were retained in the asymptotic expansion of the Hankel
function and in the expansion of the exponent in equation (28), V4(p,p) would
contain additional terms of the order of (kop)‘3/2 and lower. These additional
terms would give a better approximation to the field, especially if kop is not
extremely large, but they would not contribute to any net radiated power.

In deforming the contour C 1Into the steepest descent contour, some of
the poles of the integrand may be crossed as shown in figure 5. This usually
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happens if the observation angle is near ﬁ/Z. It simply indicates that near
the reactive surface the total field also consists of the discrete surface wave
modes .

This completes the formal solution for the scattered magnetic field. The
total field can now be found by adding the scattered field to the incident
field as given by equation (7).

ENERGY TRANSPORTED BY FIELD

The energy transported by the field will be computed by using the complex
Poynting vector theorem. The only components of the total field that transport
energy are the TM,, incident field (egq. (7)), the TM,, reflected field (the
first term in eq. (27)), the T, surface wave field (the first term in
eq. (28)), and the far zone radiation field (eq. (31)).

Since the function V(r,z) is the € component of the total magnetic

field, the electromagnetic field E,H is given by

.]:]) = -~ L v Xllfge
Jd)Eo

Thus, the power P asscciated with the total field is

i - I 1 - x> . 2
Re/ ExH das = Fieg Im/ (Vxbag)x¥ ag * dS
3 S

where S denotes the surface of sultable cross section of the surface wave
structure and V¥¥* denotes the complex conjugate of V.

M i

For the case of the incident, reflected, and surface wave fields, the only
component of the curl of Wée that is of interest is the radial component
given by -0¥/dz. Since

- 3z JYo\lfl
Oy
Y N¥rr
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the respective powers are

a,
b
wr
0 2
Ppr =(T)E'g/ [Vpp|® T ar
a
B 00
B, 0
Pow = 55—0 f 'wswl r dr
a

where the subscripts i, rf, and sw refer to the incident, reflected, and
surface wave portions of the total field, respectively. Fbr the case of the
far zone radiation field, the component of the curl of Wae that is of interest

1s the ¢ component given by p 5_ (pV¥). Actually, only the portion of this

component that varies as p-1 1is of interest. Thus,
109 .
S % (p¥) = ~3kg¥

for kg >> 1. The radiated power is, therefore,

nk TE/Z

Prag = we
—n/2

|¢rad|2 p? cos @ A

NUMERICAL RESULTS

The powers associated with the various portions of the field were computed
on an IBM 7094. Some typical results are shown in figures 6 to 8 for b/a—-Z 3
and in figures 9 to 11 for b/a = 10.0. The values of 2.3 and 10.0 for b/a
correspond to characteristic impedances of 50 and 138 ohms, respectively, for a
coaxial line with an air dielectric. The ratios of surface wave power, re-
flected power, and radiated power to incident power are shown as functions of
kod where d =b - a. The range of k,d 1s restricted so that only the Voo
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Figure 12. - Radiation pattern. Surface reactance, X = 1.0 Z,; radius ratio, bla = 2.3

mode will propagate in the coaxial portion of the structure. The results show
that this structure 1s very efficient in launching surface waves, even when the
surface reactance is quite low, if kod 1s not too small. A comparison of fig-
ures 6 and 9 shows that the larger value of b/a yields a higher launching
efficiency for a given value of kpd.

The launcher 1is also very broad banded as evidenced by the small reflected
power over a large range of k.d. It should be noted that the curves shown in
figures 6 to 1l are for constant values of surface reactance. In practice, the
surface reactance will be a function of freguency so that the actual bandwidth
of the launcher will not be known until the surface wave structure is specified.

The radiation pattern of the far zone field is shown in figure 12 for the
case where b/a = 2.3 and Xy = Zge The curves have been normalized by set-
ting the maximum value of the power density in the forward direction equal to 1.
The radiation patterns for other values of surface reactance are quite similar
to those shown in figure 12. When surface reactance was increased, the beam
width was found to become slightly smaller for a fixed value of k.d.

Since the energy transported by the total field is conserved, the power
associlated with the incident wave must always equal the sum of the powers asso-
ciated with the reflected wave, the surface wave, and the radiation field.

This fact was used to check the numerical results.

LAUNCHING EFFICIENCY-APPROXIMATION TECHNIQUES

A common method for determining the quality of a surface wave launcher is
to compute its launching efficiency as a function of frequency. The launching
efficiency is defined as the ratio of the surface wave power to the total power
radiated from the aperture of the launcher. Before presenting numerical values
for the launching efficiency by using the results from the exact analysis, it is
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instructive to consider two approximation techniques. This problem provides an
excellent opportunity to check the validity of these techniques since an exact
result has already been obtained.

The first technique that will be considered is to approximate the aperture
distribution of the launcher with a chopped surface wave distribution. In the
plane z = 0 the total field V(r,o) is assumed to be given by

V(r,o) = Hi(—jhor) for a<r<b

¥(r,o0) =0 for r >b

The total power radiated from the aperture is, therefore,

b
™8, 2, . 2
Ptotal = (DEO / [Hl(_Jhor)l r dr
a

The surface wave field that is excited by this aperture distribution is of the
form

. . -jB.z
B (-jh r)e © ©

The amplitude of the surface wave By can be computed by using the orthogo-
nal properties of the surface wave modes (ref. 4).

b
/ |EE(-gb )| % ar
a

By =~ s

/ ]Hi(—jhor”ar dr

The definition of launching efficiency shows that the efficiency of this aper-
ture distribution is ejual to B,. ©Since the launching efficiency is equal to
the ratio of two integrals with each integral having the same integrand and
same lower 1imit, the launching efficiency can be made arbitrarily close to

100 percent by increasing the upper limit b of the integral in the numerator.
This illustrates the requirement of an infinitely large aperture before 100 per-
cent efficiency can be obtained.

A second approximation technique that will be considered is Kirchhoff's
approximation. For this method, the aperture distribution is approximated by
the unperturbed incident field; that is, the total field V(r,z) evaluated at
the aperture plane z = 0 dis approximated by

V(r,0) = ¥;(r,o0) for a<r<hb
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¥(r,0) =0 for T > Db
100 —

where V.(r,z) is given by eguation (7).
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Figure 13, - Launching efficiency against kod. Surface
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2 .
BOHl( -jh r Je
where the amplitude BO 1s given by

b
/ |Ilfi(r,o)H:2L( —jhor)|r dr

a

O w
/ [H:ZL(-jhor)|2r ar

a

The launching efficiency is therefore

b
Bo/ ¥, (x,0)H5(~3h r)r dar|?
a

) b
T, / |H§_(—,jhor)]2r ar / I\J!i(r,o)lzr ar
a a

Schwarz's inequality requires the ratios of the intzgrals to be less than
unity. Thus, the launching efficiency is bounded from above by BO/YO.

Numerical values for the launching efficiency, showing both the exact and
approximate, are presented in figure 13. The results show that the launcher is
very efficlent over a large range of frequencies even if the surface reactance
is quite low. The exact results always give a higher launching efficiency than
that predicted by any of the approximate techniques; however, the approximation
techniques give quite accurate results for Xkod > 1. The values of kod when
the approximations fail also give a large reflected power as shown in figure 7.
The launcher would not be useful in this range unless some impedance matching
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echniques were employed. For all cases, the chopped surface wave approxima-
tion proved to be more accurate than Kirchhoff's method in giving an estimate of
of the exact launching efficiency.

CONCLUSIONS

Numerical results were obtained for the energy transported by the re-
flected, the surface wave, and the radiation fields by using an exact analysis.
The results show that the coaxial launcher is very efficient in exciting sur-
face waves even when the surface reactance is quite low. Both approximation
techniques gave quite accurate results as long as the frequency was sufficiently
high. ILarge discrepancies between the exact and approximate results occurred
only when the launching efficiency was low.

Lewls Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 25, 1965.
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APPENDIX - WIENER-HCOPF FACTORIZATICON

The Wiener-Hopf factorization of the function F(B) consists of finding
two functioas F'(B) and F-(B) such that F(B) = FH(B)/F-(B), where F'(B) is
analytic and nonzero in the region Re B > —Yg and F(B) is analytic and non-
zero in the region Re 8 < y!'. The formal procedure for performing this factor-
ization is based on the Cauchy integral formula (ref. 5, pp. 987-989).

Consider Cauchy's integral formula

f(B)=§Jt];5/ -i;(i-_)gds

C
where B 1is a point interior to C and f(s) is single-valued and analytic

within and on C. Let the coatour C be of the form shown in figure 14. The
contributions to the integral along Co and Cy cancel. Thus,

_ L £(s) L £(s)_
f(B)_Eﬂj/S—BdS+2ﬁj/s—Bds
C C

1 3

The integration over C7 produces a function that is analytic everywhere in-
terior to Cj, whereas the integration over Cz produces a function that is
analytic everywhere exterior to Cz. This procedure allows an arbitrary func-
tion to be decomposed into the sum of two functions with each function being
analytic in different but overlapping portions of the complex plane.

The same idea can be extended to the case where f(8) is analytic in an
infinitely long strip. If f(B)/B vanishes as ]Bé - o, f(B) can be decom-
)

posed into the sum of two functions £7(B) and f£~( by performing the indi-
cated integrations over Cl and 03 in figure 15.

£(B) = £7(B) + £7(B)

1 f(s)
o / s -p 9
Cy

+ 1 £(s)
f (B) 273 / s—-—BdS
C3

The function f£7(8) is analytic for Re B < s1, and fY(p) is analytic for
Re B > sg. If £(B) is an even function of "B, the functions fH(B) and f£-(B)
are related by fH(-8) = £~(B) and £¥(B) = £~(-B). This relation provides a

H
1
—
W
Il

Il
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very simple method for computing fY(B), for example, if f£~(B) is known.

In the problem under consideration, it is necessary to decompose the func-
tion F{B) into the ratio of two functions F'(B) and F-(B) rather than into
the sum of two functions, as discussed in the preceding paragraphs. The de-
sired decomposition is easily carried out if the function In F(B) is identified
with f(B). Since

In F() = 1n FF(B) - 1n F-(B)
and
£(B) = £H(B) + £-(B)

it follows that

+
Fﬁ(ﬁ) — ef (B)

r(p) = &L (P)

where f£+(B) and f£-(B) are computed with f£(B) = In F(B) by using the pre-
viously developed formulas. Since F(B) is an even function of B, FH(B) and
F(B) are related by FH(B)F (-B) =1 and Fr(-g)F(B) = 1.

Because of the complexity of the function F(B) in the problem under con-
sideration, it is convenient to consider the various portions of the function
separately. The function F(B) will be expressed, for convenience, as the

product of the functions K(B), L(B), M(B), N(B), and (g2 +'rg)—l (see
eq. (21)), where

26



H%(%a)

T = ——
®) = e

Hi(%a)
M(B) = A+ a E%(?\a)

2 2
B2 + y2

XZEH%(%a)JAZAb) ~ H(w)To(ha) ] + Nm[ﬁi(%a)Jo(kgg - HE(M)31(%a)]

N(B) =

and

A= (k2 + p2) M/

First, consider the function L(B) = LY(B)/L~(B). The factor L-(B) is
given by

I~ () = o-N17(B)

[H%(Qa)]
in )

i HO(Qb)
17(B) = 3 gg’@‘:*s—')“ ds

where

Cy

and

} Q= (k2 + s2)l/2

A It 1s necessary to include a convergence

Ky 4 factor Q-2 in the expression for 17(B)

since the function L{(B) does not have the

ATV B TR »Res proper behavior at infinity. The contour C%
o o 0 "o must be located in the strip —Yg <Re s <71,

kot as shown in figure 16 with the point s =5

located to the left of Cj.

The integral over Cq can be evaluated
by using Cauchy's residue theorem. The con-
tour can be closed in the right half s plane
with a semicircle of infinite radius that is
Figure 16. - Contour Cy in complex s-plane, deformed around the branch cut. It can be
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shown, after a considerable amount of work, that the integral over the semi-
circle of infinite radius and over the circle of infinitesimal radius that en-
closes the branch point s = Jjkp 1s zero. Since the integrand has no poles in
the right half § plane (ref. 8), the integral over Cq1 1s equal to the
branch cut integral. The branch cut integral can be simplified by introducing
a new real variable of integration x such that s = Jkpox. The branch cut
corresponds to the range in x of 1 < x < . After some manipulations, the
expression for L (B) becomes

r . Hg(-g'koa 1/;?2__'-"JC)H% (,jkob /%2 - i
(82 + xZ) H%(jkoa x2 - 1)H(2)£Jkob %2 - ‘l
V. -5 ; : dx

L™(B) = exp< —2_7?1«:_#_ P
O

N

. - -

where P.V. denotes the principal value of the integral. The factor Iﬁ(B)
given by L¥(p) = 1/L-(-B) since L(B) is an even function of B.

Next, consider the function M(B) = M&(B)/M'(B). The factorization can be
performed on this function by taking the logarithmic derivative of M(B):

In M7(B) - 1n M (B) = in M(B)

1 a 1 d .- 1l 4
) F M7(B) - ﬁ;zgj'ag M (B) = WEY a8 M(B)

Thus

M~(B) = M (0) exp s — ds|ag

where

MB)~M@ydﬁMm)

The integral over C3 can be evaluated by closing the contour in the
right half 3 plane with a semicircle of infinite radius that is deformed
around the branch cut as shown in figure 16. It can be shown that the integral
over this semicircle vanishes. Thus, the integral over the contour Cg 1is
equal to 2nj times the sum of the residues of the enclosed poles of m(s)
plus the branch cut integral. The integrand m(s) has a pole at s = jBO and
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a second pole at the branch point s = jky. After some manipulation it can be
shown that

B B
M (B) = M (0)exp / [2(B }Jko) - 5 _lJ.BO]dB + / Branch cut integral A8
(0] 0]

The branch cut integral can be simplified by defining a new real variable
of integration x such that s = jkgx as was done for the case of L-(B).
The expression for M~(B) then becomes

B

(0]
x T (7 ) - ()
0 mix) - m(x))dx
e "
0 1L
where
Sk, xo? w2eze) |7 ) |s(e)
max):(__s__);g-@a_l__ 1+ qa +0e LT 1EICFE)
+E HE(Ft ) £ H3(%t) HE(+¢)
and

£ = Jk a x2 - 1

The factor M'(B) can be easily obtained from M (B) by using the relation
M7 (B) = 1/M (-B) since M(B) is an even function of B.

The function K(B) = KT(B)/K~(B) can be factored by inspection.

1/2
K™(8) = (EE) 2 s, )Y/

Again, K(B) is given by K'(B) = 1/K~(-B) since K(B) is an even function of
of PB.

The function N(B) = N¥(B)/N-(B) can be factored by expressing it in the
form of an infinite product. This is possible since N(Bp) is an even function

1/2
of (kg + B2) / and has singularities in the form of simple poles (ref. 5,
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pp. 382 to 385). From the infinite product expression for N(g), the function
N™(B) can be easily identified as

(7, - B
N-(8) = ‘Fg“ l | (—np——)eﬁd/m
pona n
n=1

The function NT(B) is equal to 1/N"(-B) since N(B) is an even function of B.

The remaining term (B2 + y2) - in the expression for F(B) can easily be
factored by inspection. Thus, %he factor F-(B) is simply the product of the
expressions found for X (B), L7(B), etec., and the factor FY'(B) is the product
of the expressions for K+(B), Iﬁ(B), etec. The function F*(B) has a single
zero at B = ~jBy, because of the zero of M*(B):plus a branch point at
B = -jky» because of the branch points of KH(B), L¥(p), and M (B). The
function F-(B) has an infinite number of zeros in the B-plane located at
B =Jgr, and B = Yn(n > 0), because of the zeros of N~-(B), and a branch point
at B = jk,, becausé of the branch points of K-(B), L~(B), and M-(B).

Thus far, the function F{B) has been decomposed into the ratio of the two
functions FT(p) and F-(B) such that F'(B) is analytic for Re B > —Yg and
FP-(B) is analytic for Re B < Yg- The functions FT(B) and F-{B) are not
unique. Both PH(B) and F-{B) can be multiplied by any function p(B) that is
analytic everywhere in the finite complex @-plane to generate a new set of
functions FY(B) and F-(B). The proper function p(B) to select is that func-
tion that gives the functions F'(B) and F-(B) algebraic behavior at infinity
rather than exponzntial behavior. This selection is necessary to ensure that
the field satisfies the proper edge conditions.

A very lengthy and tedious study of the asymptotic forms of F¥(B) and
F~(B) reveals that the proper function p(B) is given by

_ 8P gpa , pa . (%) pa . ypa
p(B) = exp - [ano * 2 * 7 ln(Zn ) T n * 7 ]

wnere Y 1is Euler's constant and

o — ——
H%(—jkoa e l)H%(jkob V/x? 'i) 5
j 1
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